























Downloaded from http://comjnl.oxfordjournals.org/ by guest on September 10, 2014



J. HUGHES

depends crucially for its efficiency on an interaction
between maximise, the last function in the chain, and
gametree, the first, it can only be written as a monolithic
program without lazy evaluation. Such a program is
hard to write, hard to modify, and very hard to
understand.

6. CONCLUSION

In this paper, we have argued that modularity is the key
to successful programming. Languages which aim to
improve productivity must support modular program-
ming well. But new scope rules and mechanisms for
separate compilation are not enough —modularity
means more than modules. Our ability to decompose a
problem into parts depends directly on our ability to glue
solutions together. To assist modular programming, a
language must provide good glue. Functional program-
ming languages provide two new kinds of glue — higher-
order functions and lazy evaluation. Using these glues
one can modularise programs in new and exciting ways,
and we have shown many examples of this. Smaller and
more general modules can be re-used more widely, easing
subsequent programming. This explains why functional
programs are so much smaller and easier to write than
conventional ones. It also provides a target for functional
programmers to aim at. If any part of a program is messy
or complicated, the programmer should attempt to
modularise it and to generalise the parts. He or she
should expect to use higher-order functions and lazy
evaluation as the tools for doing this.
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Of course, we are not the first to point out the power
and elegance of higher-order functions and lazy evalu-
ation. For example, Turner shows how both can be used
to great advantage in a program for generating chemical
structures.” Abelson and Sussman stress that streams
(lazy lists) are a powerful tool for structuring programs.®
Henderson has used streams to structure functional
operating systems.” However, perhaps we place more
emphasis on modularity as the key to functional
programming’s power than do earlier papers.

Some believe that functional languages should be lazy,
others believe they should not. Some compromise, and
provide only lazy lists, with a special syntax for
constructing them (as, for example, in SCHEME).® This
paper provides further evidence that lazy evaluation is
too important to be relegated to second-class citizenship.
It is perhaps the most powerful glue functional pro-
grammers possess. One should not obstruct access to
such a vital tool.
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