























Downloaded from http://comjnl.oxfordjournals.org/ by guest on September 10, 2014



J. HUGHES

depends crucially for its efficiency on an interaction
between maximise, the last function in the chain, and
gametree, the first, it can only be written as a monolithic
program without lazy evaluation. Such a program is
hard to write, hard to modify, and very hard to
understand.

6. CONCLUSION

In this paper, we have argued that modularity is the key
to successful programming. Languages which aim to
improve productivity must support modular program-
ming well. But new scope rules and mechanisms for
separate compilation are not enough —modularity
means more than modules. Our ability to decompose a
problem into parts depends directly on our ability to glue
solutions together. To assist modular programming, a
language must provide good glue. Functional program-
ming languages provide two new kinds of glue — higher-
order functions and lazy evaluation. Using these glues
one can modularise programs in new and exciting ways,
and we have shown many examples of this. Smaller and
more general modules can be re-used more widely, easing
subsequent programming. This explains why functional
programs are so much smaller and easier to write than
conventional ones. It also provides a target for functional
programmers to aim at. If any part of a program is messy
or complicated, the programmer should attempt to
modularise it and to generalise the parts. He or she
should expect to use higher-order functions and lazy
evaluation as the tools for doing this.

REFERENCES

1. D. A. Turner, Miranda: a non-strict functional language
with polymorphic types. In Proceedings of the IFIP
International Conference on Functional Programming and
Computer Architecture. LNCS 201, Springer Verlag (1985).

2. N. Wirth, Programming in Modula—II. Springer Verlag
(1982).

3. United States Department of Defense. The Programming
Language Ada Reference Manual. Springer Verlag (1980).

4. D. McQueen, Modules for Standard ML. AT & T Bell
Laboratories (May, 1985).

Of course, we are not the first to point out the power
and elegance of higher-order functions and lazy evalu-
ation. For example, Turner shows how both can be used
to great advantage in a program for generating chemical
structures.” Abelson and Sussman stress that streams
(lazy lists) are a powerful tool for structuring programs.®
Henderson has used streams to structure functional
operating systems.” However, perhaps we place more
emphasis on modularity as the key to functional
programming’s power than do earlier papers.

Some believe that functional languages should be lazy,
others believe they should not. Some compromise, and
provide only lazy lists, with a special syntax for
constructing them (as, for example, in SCHEME).® This
paper provides further evidence that lazy evaluation is
too important to be relegated to second-class citizenship.
It is perhaps the most powerful glue functional pro-
grammers possess. One should not obstruct access to
such a vital tool.

Acknowledgements

This paper owes much to many conversations with Phil
Wadler and Richard Bird in the Programming Research
Group at Oxford. Magnus Bondesson at Chalmers
University, Goteborg pointed out a serious error in an
earlier version of one of the numerical algorithms, and
thereby prompted development of many of the others.
This work was carried out with the support of a Research
Fellowship from the UK Science and Engineering
Research Council.

5. D. A. Turner, The Semantic Elegance of applicative Lan-
guages. In ACM Symposium on Functional Languages and
Computer Architecture. Wentworth (1981).

6. H. Abelson and G. J. Sussman, The Structure and Inter-
pretation of Computer Programs. MIT Press (1984).

7. P. Henderson, Purely Functional Operating Systems. In
Functional Programming and its Applications. Cambridge
University Press (1982).

THE COMPUTER JOURNAL, VOL. 32, NO. 2 1989 107

102 ‘0T Jequieidas uo 1senb Aq /Bio'sfeulnolpioyxo’ julwody/:dny wouy papeojumoq


http://comjnl.oxfordjournals.org/

